目录
1. Unsupervised Neural Dialect Translation with Commonality and Diversity Modeling, AAAI 2020 [PDF] 摘要
3. A Retrieve-and-Rewrite Initialization Method for Unsupervised Machine Translation, ACL 2020 [PDF] 摘要
4. Knowledge Distillation for Multilingual Unsupervised Neural Machine Translation, ACL 2020 [PDF] 摘要
5. Unsupervised Multimodal Neural Machine Translation with Pseudo Visual Pivoting, ACL 2020 [PDF] 摘要
9. U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation, ICLR 2020 [PDF] 摘要
10. Unsupervised Neural Machine Translation with SMT as Posterior Regularization, AAAI 2019 [PDF] 摘要
13. Unsupervised Parallel Sentence Extraction with Parallel Segment Detection Helps Machine Translation, ACL 2019 [PDF] 摘要
14. Unsupervised Bilingual Word Embedding Agreement for Unsupervised Neural Machine Translation, ACL 2019 [PDF] 摘要
15. Translating Translationese: A Two-Step Approach to Unsupervised Machine Translation, ACL 2019 [PDF] 摘要
19. Unsupervised Pretraining for Neural Machine Translation Using Elastic Weight Consolidation, ACL 2019 [PDF] 摘要
22. Incorporating Word and Subword Units in Unsupervised Machine Translation Using Language Model Rescoring, ACL 2019 [PDF] 摘要
23. NICT’s Unsupervised Neural and Statistical Machine Translation Systems for the WMT19 News Translation Task, ACL 2019 [PDF] 摘要
26. Unsupervised Domain Adaptation for Neural Machine Translation with Domain-Aware Feature Embeddings, EMNLP 2019 [PDF] 摘要
27. IMaT: Unsupervised Text Attribute Transfer via Iterative Matching and Translation, EMNLP 2019 [PDF] 摘要
28. Supervised and Unsupervised Machine Translation for Myanmar-English and Khmer-English, EMNLP 2019 [PDF] 摘要
29. English-Myanmar Supervised and Unsupervised NMT: NICT’s Machine Translation Systems at WAT-2019, EMNLP 2019 [PDF] 摘要
30. Exemplar Guided Unsupervised Image-to-Image Translation with Semantic Consistency, ICLR 2019 [PDF] 摘要
31. Polygon-Net: A General Framework for Jointly Boosting Multiple Unsupervised Neural Machine Translation Models, IJCAI 2019 [PDF] 摘要
32. Extract and Edit: An Alternative to Back-Translation for Unsupervised Neural Machine Translation, NAACL 2019 [PDF] 摘要
33. Unsupervised Extraction of Partial Translations for Neural Machine Translation, NAACL 2019 [PDF] 摘要
34. Revisiting Adversarial Autoencoder for Unsupervised Word Translation with Cycle Consistency and Improved Training, NAACL 2019 [PDF] 摘要
40. Improving Unsupervised Word-by-Word Translation with Language Model and Denoising Autoencoder, EMNLP 2018 [PDF] 摘要
43. Phrase-based Unsupervised Machine Translation with Compositional Phrase Embeddings, EMNLP 2018 [PDF] 摘要
44. The RWTH Aachen University English-German and German-English Unsupervised Neural Machine Translation Systems for WMT 2018, EMNLP 2018 [PDF] 摘要
50. Unsupervised Image-to-Image Translation Using Domain-Specific Variational Information Bound, NeurIPS 2018 [PDF] 摘要
54. An Unsupervised Probability Model for Speech-to-Translation Alignment of Low-Resource Languages, EMNLP 2016 [PDF] 摘要
摘要
1. Unsupervised Neural Dialect Translation with Commonality and Diversity Modeling [PDF] 返回目录
AAAI 2020. AAAI Technical Track: Natural Language Processing
Yu Wan, Baosong Yang, Derek F. Wong, Lidia S. Chao, Haihua Du, Ben C. H. Ao
As a special machine translation task, dialect translation has two main characteristics: 1) lack of parallel training corpus; and 2) possessing similar grammar between two sides of the translation. In this paper, we investigate how to exploit the commonality and diversity between dialects thus to build unsupervised translation models merely accessing to monolingual data. Specifically, we leverage pivot-private embedding, layer coordination, as well as parameter sharing to sufficiently model commonality and diversity among source and target, ranging from lexical, through syntactic, to semantic levels. In order to examine the effectiveness of the proposed models, we collect 20 million monolingual corpus for each of Mandarin and Cantonese, which are official language and the most widely used dialect in China. Experimental results reveal that our methods outperform rule-based simplified and traditional Chinese conversion and conventional unsupervised translation models over 12 BLEU scores.
AAAI 2020. AAAI Technical Track: Natural Language Processing
Yu Wan, Baosong Yang, Derek F. Wong, Lidia S. Chao, Haihua Du, Ben C. H. Ao
As a special machine translation task, dialect translation has two main characteristics: 1) lack of parallel training corpus; and 2) possessing similar grammar between two sides of the translation. In this paper, we investigate how to exploit the commonality and diversity between dialects thus to build unsupervised translation models merely accessing to monolingual data. Specifically, we leverage pivot-private embedding, layer coordination, as well as parameter sharing to sufficiently model commonality and diversity among source and target, ranging from lexical, through syntactic, to semantic levels. In order to examine the effectiveness of the proposed models, we collect 20 million monolingual corpus for each of Mandarin and Cantonese, which are official language and the most widely used dialect in China. Experimental results reveal that our methods outperform rule-based simplified and traditional Chinese conversion and conventional unsupervised translation models over 12 BLEU scores.
2. Learning to Transfer: Unsupervised Domain Translation via Meta-Learning [PDF] 返回目录
AAAI 2020. AAAI Technical Track: Vision
Jianxin Lin, Yijun Wang, Zhibo Chen, Tianyu He
Unsupervised domain translation has recently achieved impressive performance with Generative Adversarial Network (GAN) and sufficient (unpaired) training data. However, existing domain translation frameworks form in a disposable way where the learning experiences are ignored and the obtained model cannot be adapted to a new coming domain. In this work, we take on unsupervised domain translation problems from a meta-learning perspective. We propose a model called Meta-Translation GAN (MT-GAN) to find good initialization of translation models. In the meta-training procedure, MT-GAN is explicitly trained with a primary translation task and a synthesized dual translation task. A cycle-consistency meta-optimization objective is designed to ensure the generalization ability. We demonstrate effectiveness of our model on ten diverse two-domain translation tasks and multiple face identity translation tasks. We show that our proposed approach significantly outperforms the existing domain translation methods when each domain contains no more than ten training samples.
AAAI 2020. AAAI Technical Track: Vision
Jianxin Lin, Yijun Wang, Zhibo Chen, Tianyu He
Unsupervised domain translation has recently achieved impressive performance with Generative Adversarial Network (GAN) and sufficient (unpaired) training data. However, existing domain translation frameworks form in a disposable way where the learning experiences are ignored and the obtained model cannot be adapted to a new coming domain. In this work, we take on unsupervised domain translation problems from a meta-learning perspective. We propose a model called Meta-Translation GAN (MT-GAN) to find good initialization of translation models. In the meta-training procedure, MT-GAN is explicitly trained with a primary translation task and a synthesized dual translation task. A cycle-consistency meta-optimization objective is designed to ensure the generalization ability. We demonstrate effectiveness of our model on ten diverse two-domain translation tasks and multiple face identity translation tasks. We show that our proposed approach significantly outperforms the existing domain translation methods when each domain contains no more than ten training samples.
3. A Retrieve-and-Rewrite Initialization Method for Unsupervised Machine Translation [PDF] 返回目录
ACL 2020.
Shuo Ren, Yu Wu, Shujie Liu, Ming Zhou, Shuai Ma
The commonly used framework for unsupervised machine translation builds initial translation models of both translation directions, and then performs iterative back-translation to jointly boost their translation performance. The initialization stage is very important since bad initialization may wrongly squeeze the search space, and too much noise introduced in this stage may hurt the final performance. In this paper, we propose a novel retrieval and rewriting based method to better initialize unsupervised translation models. We first retrieve semantically comparable sentences from monolingual corpora of two languages and then rewrite the target side to minimize the semantic gap between the source and retrieved targets with a designed rewriting model. The rewritten sentence pairs are used to initialize SMT models which are used to generate pseudo data for two NMT models, followed by the iterative back-translation. Experiments show that our method can build better initial unsupervised translation models and improve the final translation performance by over 4 BLEU scores. Our code is released at https://github.com/Imagist-Shuo/RRforUNMT.git.
ACL 2020.
Shuo Ren, Yu Wu, Shujie Liu, Ming Zhou, Shuai Ma
The commonly used framework for unsupervised machine translation builds initial translation models of both translation directions, and then performs iterative back-translation to jointly boost their translation performance. The initialization stage is very important since bad initialization may wrongly squeeze the search space, and too much noise introduced in this stage may hurt the final performance. In this paper, we propose a novel retrieval and rewriting based method to better initialize unsupervised translation models. We first retrieve semantically comparable sentences from monolingual corpora of two languages and then rewrite the target side to minimize the semantic gap between the source and retrieved targets with a designed rewriting model. The rewritten sentence pairs are used to initialize SMT models which are used to generate pseudo data for two NMT models, followed by the iterative back-translation. Experiments show that our method can build better initial unsupervised translation models and improve the final translation performance by over 4 BLEU scores. Our code is released at https://github.com/Imagist-Shuo/RRforUNMT.git.
4. Knowledge Distillation for Multilingual Unsupervised Neural Machine Translation [PDF] 返回目录
ACL 2020.
Haipeng Sun, Rui Wang, Kehai Chen, Masao Utiyama, Eiichiro Sumita, Tiejun Zhao
Unsupervised neural machine translation (UNMT) has recently achieved remarkable results for several language pairs. However, it can only translate between a single language pair and cannot produce translation results for multiple language pairs at the same time. That is, research on multilingual UNMT has been limited. In this paper, we empirically introduce a simple method to translate between thirteen languages using a single encoder and a single decoder, making use of multilingual data to improve UNMT for all language pairs. On the basis of the empirical findings, we propose two knowledge distillation methods to further enhance multilingual UNMT performance. Our experiments on a dataset with English translated to and from twelve other languages (including three language families and six language branches) show remarkable results, surpassing strong unsupervised individual baselines while achieving promising performance between non-English language pairs in zero-shot translation scenarios and alleviating poor performance in low-resource language pairs.
ACL 2020.
Haipeng Sun, Rui Wang, Kehai Chen, Masao Utiyama, Eiichiro Sumita, Tiejun Zhao
Unsupervised neural machine translation (UNMT) has recently achieved remarkable results for several language pairs. However, it can only translate between a single language pair and cannot produce translation results for multiple language pairs at the same time. That is, research on multilingual UNMT has been limited. In this paper, we empirically introduce a simple method to translate between thirteen languages using a single encoder and a single decoder, making use of multilingual data to improve UNMT for all language pairs. On the basis of the empirical findings, we propose two knowledge distillation methods to further enhance multilingual UNMT performance. Our experiments on a dataset with English translated to and from twelve other languages (including three language families and six language branches) show remarkable results, surpassing strong unsupervised individual baselines while achieving promising performance between non-English language pairs in zero-shot translation scenarios and alleviating poor performance in low-resource language pairs.
5. Unsupervised Multimodal Neural Machine Translation with Pseudo Visual Pivoting [PDF] 返回目录
ACL 2020.
Po-Yao Huang, Junjie Hu, Xiaojun Chang, Alexander Hauptmann
Unsupervised machine translation (MT) has recently achieved impressive results with monolingual corpora only. However, it is still challenging to associate source-target sentences in the latent space. As people speak different languages biologically share similar visual systems, the potential of achieving better alignment through visual content is promising yet under-explored in unsupervised multimodal MT (MMT). In this paper, we investigate how to utilize visual content for disambiguation and promoting latent space alignment in unsupervised MMT. Our model employs multimodal back-translation and features pseudo visual pivoting in which we learn a shared multilingual visual-semantic embedding space and incorporate visually-pivoted captioning as additional weak supervision. The experimental results on the widely used Multi30K dataset show that the proposed model significantly improves over the state-of-the-art methods and generalizes well when images are not available at the testing time.
ACL 2020.
Po-Yao Huang, Junjie Hu, Xiaojun Chang, Alexander Hauptmann
Unsupervised machine translation (MT) has recently achieved impressive results with monolingual corpora only. However, it is still challenging to associate source-target sentences in the latent space. As people speak different languages biologically share similar visual systems, the potential of achieving better alignment through visual content is promising yet under-explored in unsupervised multimodal MT (MMT). In this paper, we investigate how to utilize visual content for disambiguation and promoting latent space alignment in unsupervised MMT. Our model employs multimodal back-translation and features pseudo visual pivoting in which we learn a shared multilingual visual-semantic embedding space and incorporate visually-pivoted captioning as additional weak supervision. The experimental results on the widely used Multi30K dataset show that the proposed model significantly improves over the state-of-the-art methods and generalizes well when images are not available at the testing time.
6. Unsupervised Word Translation with Adversarial Autoencoder [PDF] 返回目录
CL 2020.
Tasnim Mohiuddin, Shafiq Joty
Crosslingual word embeddings learned from monolingual embeddings have a crucial role in many downstream tasks, ranging from machine translation to transfer learning. Adversarial training has shown impressive success in learning crosslingual embeddings and the associated word translation task without any parallel data by mapping monolingual embeddings to a shared space. However, recent work has shown superior performance for non-adversarial methods in more challenging language pairs. In this article, we investigate adversarial autoencoder for unsupervised word translation and propose two novel extensions to it that yield more stable training and improved results. Our method includes regularization terms to enforce cycle consistency and input reconstruction, and puts the target encoders as an adversary against the corresponding discriminator. We use two types of refinement procedures sequentially after obtaining the trained encoders and mappings from the adversarial training, namely, refinement with Procrustes solution and refinement with symmetric re-weighting. Extensive experimentations with high- and low-resource languages from two different data sets show that our method achieves better performance than existing adversarial and non-adversarial approaches and is also competitive with the supervised system. Along with performing comprehensive ablation studies to understand the contribution of different components of our adversarial model, we also conduct a thorough analysis of the refinement procedures to understand their effects.
CL 2020.
Tasnim Mohiuddin, Shafiq Joty
Crosslingual word embeddings learned from monolingual embeddings have a crucial role in many downstream tasks, ranging from machine translation to transfer learning. Adversarial training has shown impressive success in learning crosslingual embeddings and the associated word translation task without any parallel data by mapping monolingual embeddings to a shared space. However, recent work has shown superior performance for non-adversarial methods in more challenging language pairs. In this article, we investigate adversarial autoencoder for unsupervised word translation and propose two novel extensions to it that yield more stable training and improved results. Our method includes regularization terms to enforce cycle consistency and input reconstruction, and puts the target encoders as an adversary against the corresponding discriminator. We use two types of refinement procedures sequentially after obtaining the trained encoders and mappings from the adversarial training, namely, refinement with Procrustes solution and refinement with symmetric re-weighting. Extensive experimentations with high- and low-resource languages from two different data sets show that our method achieves better performance than existing adversarial and non-adversarial approaches and is also competitive with the supervised system. Along with performing comprehensive ablation studies to understand the contribution of different components of our adversarial model, we also conduct a thorough analysis of the refinement procedures to understand their effects.
7. A Multilingual View of Unsupervised Machine Translation [PDF] 返回目录
EMNLP 2020. Findings Short Paper
Xavier Garcia, Pierre Foret, Thibault Sellam, Ankur Parikh
We present a probabilistic framework for multilingual neural machine translation that encompasses supervised and unsupervised setups, focusing on unsupervised translation. In addition to studying the vanilla case where there is only monolingual data available, we propose a novel setup where one language in the (source, target) pair is not associated with any parallel data, but there may exist auxiliary parallel data that contains the other. This auxiliary data can naturally be utilized in our probabilistic framework via a novel cross-translation loss term. Empirically, we show that our approach results in higher BLEU scores over state-of-the-art unsupervised models on the WMT’14 English-French, WMT’16 English-German, and WMT’16 English-Romanian datasets in most directions.
EMNLP 2020. Findings Short Paper
Xavier Garcia, Pierre Foret, Thibault Sellam, Ankur Parikh
We present a probabilistic framework for multilingual neural machine translation that encompasses supervised and unsupervised setups, focusing on unsupervised translation. In addition to studying the vanilla case where there is only monolingual data available, we propose a novel setup where one language in the (source, target) pair is not associated with any parallel data, but there may exist auxiliary parallel data that contains the other. This auxiliary data can naturally be utilized in our probabilistic framework via a novel cross-translation loss term. Empirically, we show that our approach results in higher BLEU scores over state-of-the-art unsupervised models on the WMT’14 English-French, WMT’16 English-German, and WMT’16 English-Romanian datasets in most directions.
8. Reference Language based Unsupervised Neural Machine Translation [PDF] 返回目录
EMNLP 2020. Findings Short Paper
Zuchao Li, Hai Zhao, Rui Wang, Masao Utiyama, Eiichiro Sumita
Exploiting a common language as an auxiliary for better translation has a long tradition in machine translation and lets supervised learning-based machine translation enjoy the enhancement delivered by the well-used pivot language in the absence of a source language to target language parallel corpus. The rise of unsupervised neural machine translation (UNMT) almost completely relieves the parallel corpus curse, though UNMT is still subject to unsatisfactory performance due to the vagueness of the clues available for its core back-translation training. Further enriching the idea of pivot translation by extending the use of parallel corpora beyond the source-target paradigm, we propose a new reference language-based framework for UNMT, RUNMT, in which the reference language only shares a parallel corpus with the source, but this corpus still indicates a signal clear enough to help the reconstruction training of UNMT through a proposed reference agreement mechanism. Experimental results show that our methods improve the quality of UNMT over that of a strong baseline that uses only one auxiliary language, demonstrating the usefulness of the proposed reference language-based UNMT and establishing a good start for the community.
EMNLP 2020. Findings Short Paper
Zuchao Li, Hai Zhao, Rui Wang, Masao Utiyama, Eiichiro Sumita
Exploiting a common language as an auxiliary for better translation has a long tradition in machine translation and lets supervised learning-based machine translation enjoy the enhancement delivered by the well-used pivot language in the absence of a source language to target language parallel corpus. The rise of unsupervised neural machine translation (UNMT) almost completely relieves the parallel corpus curse, though UNMT is still subject to unsatisfactory performance due to the vagueness of the clues available for its core back-translation training. Further enriching the idea of pivot translation by extending the use of parallel corpora beyond the source-target paradigm, we propose a new reference language-based framework for UNMT, RUNMT, in which the reference language only shares a parallel corpus with the source, but this corpus still indicates a signal clear enough to help the reconstruction training of UNMT through a proposed reference agreement mechanism. Experimental results show that our methods improve the quality of UNMT over that of a strong baseline that uses only one auxiliary language, demonstrating the usefulness of the proposed reference language-based UNMT and establishing a good start for the community.
9. U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation [PDF] 返回目录
ICLR 2020.
Junho Kim, Minjae Kim, Hyeonwoo Kang, Kwanghee Lee
We propose a novel method for unsupervised image-to-image translation, which incorporates a new attention module and a new learnable normalization function in an end-to-end manner. The attention module guides our model to focus on more important regions distinguishing between source and target domains based on the attention map obtained by the auxiliary classifier. Unlike previous attention-based method which cannot handle the geometric changes between domains, our model can translate both images requiring holistic changes and images requiring large shape changes. Moreover, our new AdaLIN (Adaptive Layer-Instance Normalization) function helps our attention-guided model to flexibly control the amount of change in shape and texture by learned parameters depending on datasets. Experimental results show the superiority of the proposed method compared to the existing state-of-the-art models with a fixed network architecture and hyper-parameters.
ICLR 2020.
Junho Kim, Minjae Kim, Hyeonwoo Kang, Kwanghee Lee
We propose a novel method for unsupervised image-to-image translation, which incorporates a new attention module and a new learnable normalization function in an end-to-end manner. The attention module guides our model to focus on more important regions distinguishing between source and target domains based on the attention map obtained by the auxiliary classifier. Unlike previous attention-based method which cannot handle the geometric changes between domains, our model can translate both images requiring holistic changes and images requiring large shape changes. Moreover, our new AdaLIN (Adaptive Layer-Instance Normalization) function helps our attention-guided model to flexibly control the amount of change in shape and texture by learned parameters depending on datasets. Experimental results show the superiority of the proposed method compared to the existing state-of-the-art models with a fixed network architecture and hyper-parameters.
10. Unsupervised Neural Machine Translation with SMT as Posterior Regularization [PDF] 返回目录
AAAI 2019. AAAI Technical Track: AI and the Web
Shuo Ren, Zhirui Zhang, Shujie Liu, Ming Zhou, Shuai Ma
Without real bilingual corpus available, unsupervised Neural Machine Translation (NMT) typically requires pseudo parallel data generated with the back-translation method for the model training. However, due to weak supervision, the pseudo data inevitably contain noises and errors that will be accumulated and reinforced in the subsequent training process, leading to bad translation performance. To address this issue, we introduce phrase based Statistic Machine Translation (SMT) models which are robust to noisy data, as posterior regularizations to guide the training of unsupervised NMT models in the iterative back-translation process. Our method starts from SMT models built with pre-trained language models and word-level translation tables inferred from cross-lingual embeddings. Then SMT and NMT models are optimized jointly and boost each other incrementally in a unified EM framework. In this way, (1) the negative effect caused by errors in the iterative back-translation process can be alleviated timely by SMT filtering noises from its phrase tables; meanwhile, (2) NMT can compensate for the deficiency of fluency inherent in SMT. Experiments conducted on en-fr and en-de translation tasks show that our method outperforms the strong baseline and achieves new state-of-the-art unsupervised machine translation performance.
AAAI 2019. AAAI Technical Track: AI and the Web
Shuo Ren, Zhirui Zhang, Shujie Liu, Ming Zhou, Shuai Ma
Without real bilingual corpus available, unsupervised Neural Machine Translation (NMT) typically requires pseudo parallel data generated with the back-translation method for the model training. However, due to weak supervision, the pseudo data inevitably contain noises and errors that will be accumulated and reinforced in the subsequent training process, leading to bad translation performance. To address this issue, we introduce phrase based Statistic Machine Translation (SMT) models which are robust to noisy data, as posterior regularizations to guide the training of unsupervised NMT models in the iterative back-translation process. Our method starts from SMT models built with pre-trained language models and word-level translation tables inferred from cross-lingual embeddings. Then SMT and NMT models are optimized jointly and boost each other incrementally in a unified EM framework. In this way, (1) the negative effect caused by errors in the iterative back-translation process can be alleviated timely by SMT filtering noises from its phrase tables; meanwhile, (2) NMT can compensate for the deficiency of fluency inherent in SMT. Experiments conducted on en-fr and en-de translation tasks show that our method outperforms the strong baseline and achieves new state-of-the-art unsupervised machine translation performance.
11. Unsupervised Pivot Translation for Distant Languages [PDF] 返回目录
ACL 2019.
Yichong Leng, Xu Tan, Tao Qin, Xiang-Yang Li, Tie-Yan Liu
Unsupervised neural machine translation (NMT) has attracted a lot of attention recently. While state-of-the-art methods for unsupervised translation usually perform well between similar languages (e.g., English-German translation), they perform poorly between distant languages, because unsupervised alignment does not work well for distant languages. In this work, we introduce unsupervised pivot translation for distant languages, which translates a language to a distant language through multiple hops, and the unsupervised translation on each hop is relatively easier than the original direct translation. We propose a learning to route (LTR) method to choose the translation path between the source and target languages. LTR is trained on language pairs whose best translation path is available and is applied on the unseen language pairs for path selection. Experiments on 20 languages and 294 distant language pairs demonstrate the advantages of the unsupervised pivot translation for distant languages, as well as the effectiveness of the proposed LTR for path selection. Specifically, in the best case, LTR achieves an improvement of 5.58 BLEU points over the conventional direct unsupervised method.
ACL 2019.
Yichong Leng, Xu Tan, Tao Qin, Xiang-Yang Li, Tie-Yan Liu
Unsupervised neural machine translation (NMT) has attracted a lot of attention recently. While state-of-the-art methods for unsupervised translation usually perform well between similar languages (e.g., English-German translation), they perform poorly between distant languages, because unsupervised alignment does not work well for distant languages. In this work, we introduce unsupervised pivot translation for distant languages, which translates a language to a distant language through multiple hops, and the unsupervised translation on each hop is relatively easier than the original direct translation. We propose a learning to route (LTR) method to choose the translation path between the source and target languages. LTR is trained on language pairs whose best translation path is available and is applied on the unseen language pairs for path selection. Experiments on 20 languages and 294 distant language pairs demonstrate the advantages of the unsupervised pivot translation for distant languages, as well as the effectiveness of the proposed LTR for path selection. Specifically, in the best case, LTR achieves an improvement of 5.58 BLEU points over the conventional direct unsupervised method.
12. An Effective Approach to Unsupervised Machine Translation [PDF] 返回目录
ACL 2019.
Mikel Artetxe, Gorka Labaka, Eneko Agirre
While machine translation has traditionally relied on large amounts of parallel corpora, a recent research line has managed to train both Neural Machine Translation (NMT) and Statistical Machine Translation (SMT) systems using monolingual corpora only. In this paper, we identify and address several deficiencies of existing unsupervised SMT approaches by exploiting subword information, developing a theoretically well founded unsupervised tuning method, and incorporating a joint refinement procedure. Moreover, we use our improved SMT system to initialize a dual NMT model, which is further fine-tuned through on-the-fly back-translation. Together, we obtain large improvements over the previous state-of-the-art in unsupervised machine translation. For instance, we get 22.5 BLEU points in English-to-German WMT 2014, 5.5 points more than the previous best unsupervised system, and 0.5 points more than the (supervised) shared task winner back in 2014.
ACL 2019.
Mikel Artetxe, Gorka Labaka, Eneko Agirre
While machine translation has traditionally relied on large amounts of parallel corpora, a recent research line has managed to train both Neural Machine Translation (NMT) and Statistical Machine Translation (SMT) systems using monolingual corpora only. In this paper, we identify and address several deficiencies of existing unsupervised SMT approaches by exploiting subword information, developing a theoretically well founded unsupervised tuning method, and incorporating a joint refinement procedure. Moreover, we use our improved SMT system to initialize a dual NMT model, which is further fine-tuned through on-the-fly back-translation. Together, we obtain large improvements over the previous state-of-the-art in unsupervised machine translation. For instance, we get 22.5 BLEU points in English-to-German WMT 2014, 5.5 points more than the previous best unsupervised system, and 0.5 points more than the (supervised) shared task winner back in 2014.
13. Unsupervised Parallel Sentence Extraction with Parallel Segment Detection Helps Machine Translation [PDF] 返回目录
ACL 2019.
Viktor Hangya, Alexander Fraser
Mining parallel sentences from comparable corpora is important. Most previous work relies on supervised systems, which are trained on parallel data, thus their applicability is problematic in low-resource scenarios. Recent developments in building unsupervised bilingual word embeddings made it possible to mine parallel sentences based on cosine similarities of source and target language words. We show that relying only on this information is not enough, since sentences often have similar words but different meanings. We detect continuous parallel segments in sentence pair candidates and rely on them when mining parallel sentences. We show better mining accuracy on three language pairs in a standard shared task on artificial data. We also provide the first experiments showing that parallel sentences mined from real life sources improve unsupervised MT. Our code is available, we hope it will be used to support low-resource MT research.
ACL 2019.
Viktor Hangya, Alexander Fraser
Mining parallel sentences from comparable corpora is important. Most previous work relies on supervised systems, which are trained on parallel data, thus their applicability is problematic in low-resource scenarios. Recent developments in building unsupervised bilingual word embeddings made it possible to mine parallel sentences based on cosine similarities of source and target language words. We show that relying only on this information is not enough, since sentences often have similar words but different meanings. We detect continuous parallel segments in sentence pair candidates and rely on them when mining parallel sentences. We show better mining accuracy on three language pairs in a standard shared task on artificial data. We also provide the first experiments showing that parallel sentences mined from real life sources improve unsupervised MT. Our code is available, we hope it will be used to support low-resource MT research.
14. Unsupervised Bilingual Word Embedding Agreement for Unsupervised Neural Machine Translation [PDF] 返回目录
ACL 2019.
Haipeng Sun, Rui Wang, Kehai Chen, Masao Utiyama, Eiichiro Sumita, Tiejun Zhao
Unsupervised bilingual word embedding (UBWE), together with other technologies such as back-translation and denoising, has helped unsupervised neural machine translation (UNMT) achieve remarkable results in several language pairs. In previous methods, UBWE is first trained using non-parallel monolingual corpora and then this pre-trained UBWE is used to initialize the word embedding in the encoder and decoder of UNMT. That is, the training of UBWE and UNMT are separate. In this paper, we first empirically investigate the relationship between UBWE and UNMT. The empirical findings show that the performance of UNMT is significantly affected by the performance of UBWE. Thus, we propose two methods that train UNMT with UBWE agreement. Empirical results on several language pairs show that the proposed methods significantly outperform conventional UNMT.
ACL 2019.
Haipeng Sun, Rui Wang, Kehai Chen, Masao Utiyama, Eiichiro Sumita, Tiejun Zhao
Unsupervised bilingual word embedding (UBWE), together with other technologies such as back-translation and denoising, has helped unsupervised neural machine translation (UNMT) achieve remarkable results in several language pairs. In previous methods, UBWE is first trained using non-parallel monolingual corpora and then this pre-trained UBWE is used to initialize the word embedding in the encoder and decoder of UNMT. That is, the training of UBWE and UNMT are separate. In this paper, we first empirically investigate the relationship between UBWE and UNMT. The empirical findings show that the performance of UNMT is significantly affected by the performance of UBWE. Thus, we propose two methods that train UNMT with UBWE agreement. Empirical results on several language pairs show that the proposed methods significantly outperform conventional UNMT.
15. Translating Translationese: A Two-Step Approach to Unsupervised Machine Translation [PDF] 返回目录
ACL 2019.
Nima Pourdamghani, Nada Aldarrab, Marjan Ghazvininejad, Kevin Knight, Jonathan May
Given a rough, word-by-word gloss of a source language sentence, target language natives can uncover the latent, fully-fluent rendering of the translation. In this work we explore this intuition by breaking translation into a two step process: generating a rough gloss by means of a dictionary and then ‘translating’ the resulting pseudo-translation, or ‘Translationese’ into a fully fluent translation. We build our Translationese decoder once from a mish-mash of parallel data that has the target language in common and then can build dictionaries on demand using unsupervised techniques, resulting in rapidly generated unsupervised neural MT systems for many source languages. We apply this process to 14 test languages, obtaining better or comparable translation results on high-resource languages than previously published unsupervised MT studies, and obtaining good quality results for low-resource languages that have never been used in an unsupervised MT scenario.
ACL 2019.
Nima Pourdamghani, Nada Aldarrab, Marjan Ghazvininejad, Kevin Knight, Jonathan May
Given a rough, word-by-word gloss of a source language sentence, target language natives can uncover the latent, fully-fluent rendering of the translation. In this work we explore this intuition by breaking translation into a two step process: generating a rough gloss by means of a dictionary and then ‘translating’ the resulting pseudo-translation, or ‘Translationese’ into a fully fluent translation. We build our Translationese decoder once from a mish-mash of parallel data that has the target language in common and then can build dictionaries on demand using unsupervised techniques, resulting in rapidly generated unsupervised neural MT systems for many source languages. We apply this process to 14 test languages, obtaining better or comparable translation results on high-resource languages than previously published unsupervised MT studies, and obtaining good quality results for low-resource languages that have never been used in an unsupervised MT scenario.
16. Unsupervised Question Answering by Cloze Translation [PDF] 返回目录
ACL 2019.
Patrick Lewis, Ludovic Denoyer, Sebastian Riedel
Obtaining training data for Question Answering (QA) is time-consuming and resource-intensive, and existing QA datasets are only available for limited domains and languages. In this work, we explore to what extent high quality training data is actually required for Extractive QA, and investigate the possibility of unsupervised Extractive QA. We approach this problem by first learning to generate context, question and answer triples in an unsupervised manner, which we then use to synthesize Extractive QA training data automatically. To generate such triples, we first sample random context paragraphs from a large corpus of documents and then random noun phrases or Named Entity mentions from these paragraphs as answers. Next we convert answers in context to “fill-in-the-blank” cloze questions and finally translate them into natural questions. We propose and compare various unsupervised ways to perform cloze-to-natural question translation, including training an unsupervised NMT model using non-aligned corpora of natural questions and cloze questions as well as a rule-based approach. We find that modern QA models can learn to answer human questions surprisingly well using only synthetic training data. We demonstrate that, without using the SQuAD training data at all, our approach achieves 56.4 F1 on SQuAD v1 (64.5 F1 when the answer is a Named Entity mention), outperforming early supervised models.
ACL 2019.
Patrick Lewis, Ludovic Denoyer, Sebastian Riedel
Obtaining training data for Question Answering (QA) is time-consuming and resource-intensive, and existing QA datasets are only available for limited domains and languages. In this work, we explore to what extent high quality training data is actually required for Extractive QA, and investigate the possibility of unsupervised Extractive QA. We approach this problem by first learning to generate context, question and answer triples in an unsupervised manner, which we then use to synthesize Extractive QA training data automatically. To generate such triples, we first sample random context paragraphs from a large corpus of documents and then random noun phrases or Named Entity mentions from these paragraphs as answers. Next we convert answers in context to “fill-in-the-blank” cloze questions and finally translate them into natural questions. We propose and compare various unsupervised ways to perform cloze-to-natural question translation, including training an unsupervised NMT model using non-aligned corpora of natural questions and cloze questions as well as a rule-based approach. We find that modern QA models can learn to answer human questions surprisingly well using only synthetic training data. We demonstrate that, without using the SQuAD training data at all, our approach achieves 56.4 F1 on SQuAD v1 (64.5 F1 when the answer is a Named Entity mention), outperforming early supervised models.
17. Bilingual Lexicon Induction through Unsupervised Machine Translation [PDF] 返回目录
ACL 2019.
Mikel Artetxe, Gorka Labaka, Eneko Agirre
A recent research line has obtained strong results on bilingual lexicon induction by aligning independently trained word embeddings in two languages and using the resulting cross-lingual embeddings to induce word translation pairs through nearest neighbor or related retrieval methods. In this paper, we propose an alternative approach to this problem that builds on the recent work on unsupervised machine translation. This way, instead of directly inducing a bilingual lexicon from cross-lingual embeddings, we use them to build a phrase-table, combine it with a language model, and use the resulting machine translation system to generate a synthetic parallel corpus, from which we extract the bilingual lexicon using statistical word alignment techniques. As such, our method can work with any word embedding and cross-lingual mapping technique, and it does not require any additional resource besides the monolingual corpus used to train the embeddings. When evaluated on the exact same cross-lingual embeddings, our proposed method obtains an average improvement of 6 accuracy points over nearest neighbor and 4 points over CSLS retrieval, establishing a new state-of-the-art in the standard MUSE dataset.
ACL 2019.
Mikel Artetxe, Gorka Labaka, Eneko Agirre
A recent research line has obtained strong results on bilingual lexicon induction by aligning independently trained word embeddings in two languages and using the resulting cross-lingual embeddings to induce word translation pairs through nearest neighbor or related retrieval methods. In this paper, we propose an alternative approach to this problem that builds on the recent work on unsupervised machine translation. This way, instead of directly inducing a bilingual lexicon from cross-lingual embeddings, we use them to build a phrase-table, combine it with a language model, and use the resulting machine translation system to generate a synthetic parallel corpus, from which we extract the bilingual lexicon using statistical word alignment techniques. As such, our method can work with any word embedding and cross-lingual mapping technique, and it does not require any additional resource besides the monolingual corpus used to train the embeddings. When evaluated on the exact same cross-lingual embeddings, our proposed method obtains an average improvement of 6 accuracy points over nearest neighbor and 4 points over CSLS retrieval, establishing a new state-of-the-art in the standard MUSE dataset.
18. Unsupervised Paraphrasing without Translation [PDF] 返回目录
ACL 2019.
Aurko Roy, David Grangier
Paraphrasing is an important task demonstrating the ability to abstract semantic content from its surface form. Recent literature on automatic paraphrasing is dominated by methods leveraging machine translation as an intermediate step. This contrasts with humans, who can paraphrase without necessarily being bilingual. This work proposes to learn paraphrasing models only from a monolingual corpus. To that end, we propose a residual variant of vector-quantized variational auto-encoder. Our experiments consider paraphrase identification, and paraphrasing for training set augmentation, comparing to supervised and unsupervised translation-based approaches. Monolingual paraphrasing is shown to outperform unsupervised translation in all contexts. The comparison with supervised MT is more mixed: monolingual paraphrasing is interesting for identification and augmentation but supervised MT is superior for generation.
ACL 2019.
Aurko Roy, David Grangier
Paraphrasing is an important task demonstrating the ability to abstract semantic content from its surface form. Recent literature on automatic paraphrasing is dominated by methods leveraging machine translation as an intermediate step. This contrasts with humans, who can paraphrase without necessarily being bilingual. This work proposes to learn paraphrasing models only from a monolingual corpus. To that end, we propose a residual variant of vector-quantized variational auto-encoder. Our experiments consider paraphrase identification, and paraphrasing for training set augmentation, comparing to supervised and unsupervised translation-based approaches. Monolingual paraphrasing is shown to outperform unsupervised translation in all contexts. The comparison with supervised MT is more mixed: monolingual paraphrasing is interesting for identification and augmentation but supervised MT is superior for generation.
19. Unsupervised Pretraining for Neural Machine Translation Using Elastic Weight Consolidation [PDF] 返回目录
ACL 2019. Student Research Workshop
Dušan Variš, Ondřej Bojar
This work presents our ongoing research of unsupervised pretraining in neural machine translation (NMT). In our method, we initialize the weights of the encoder and decoder with two language models that are trained with monolingual data and then fine-tune the model on parallel data using Elastic Weight Consolidation (EWC) to avoid forgetting of the original language modeling task. We compare the regularization by EWC with the previous work that focuses on regularization by language modeling objectives. The positive result is that using EWC with the decoder achieves BLEU scores similar to the previous work. However, the model converges 2-3 times faster and does not require the original unlabeled training data during the fine-tuning stage. In contrast, the regularization using EWC is less effective if the original and new tasks are not closely related. We show that initializing the bidirectional NMT encoder with a left-to-right language model and forcing the model to remember the original left-to-right language modeling task limits the learning capacity of the encoder for the whole bidirectional context.
ACL 2019. Student Research Workshop
Dušan Variš, Ondřej Bojar
This work presents our ongoing research of unsupervised pretraining in neural machine translation (NMT). In our method, we initialize the weights of the encoder and decoder with two language models that are trained with monolingual data and then fine-tune the model on parallel data using Elastic Weight Consolidation (EWC) to avoid forgetting of the original language modeling task. We compare the regularization by EWC with the previous work that focuses on regularization by language modeling objectives. The positive result is that using EWC with the decoder achieves BLEU scores similar to the previous work. However, the model converges 2-3 times faster and does not require the original unlabeled training data during the fine-tuning stage. In contrast, the regularization using EWC is less effective if the original and new tasks are not closely related. We show that initializing the bidirectional NMT encoder with a left-to-right language model and forcing the model to remember the original left-to-right language modeling task limits the learning capacity of the encoder for the whole bidirectional context.
20. Unsupervised Compositional Translation of Multiword Expressions [PDF] 返回目录
ACL 2019. the Joint Workshop on Multiword Expressions and WordNet (MWE-WN 2019)
Pablo Gamallo, Marcos Garcia
This article describes a dependency-based strategy that uses compositional distributional semantics and cross-lingual word embeddings to translate multiword expressions (MWEs). Our unsupervised approach performs translation as a process of word contextualization by taking into account lexico-syntactic contexts and selectional preferences. This strategy is suited to translate phraseological combinations and phrases whose constituent words are lexically restricted by each other. Several experiments in adjective-noun and verb-object compounds show that mutual contextualization (co-compositionality) clearly outperforms other compositional methods. The paper also contributes with a new freely available dataset of English-Spanish MWEs used to validate the proposed compositional strategy.
ACL 2019. the Joint Workshop on Multiword Expressions and WordNet (MWE-WN 2019)
Pablo Gamallo, Marcos Garcia
This article describes a dependency-based strategy that uses compositional distributional semantics and cross-lingual word embeddings to translate multiword expressions (MWEs). Our unsupervised approach performs translation as a process of word contextualization by taking into account lexico-syntactic contexts and selectional preferences. This strategy is suited to translate phraseological combinations and phrases whose constituent words are lexically restricted by each other. Several experiments in adjective-noun and verb-object compounds show that mutual contextualization (co-compositionality) clearly outperforms other compositional methods. The paper also contributes with a new freely available dataset of English-Spanish MWEs used to validate the proposed compositional strategy.
21. CUNI Systems for the Unsupervised News Translation Task in WMT 2019 [PDF] 返回目录
ACL 2019. the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)
Ivana Kvapilíková, Dominik Macháček, Ondřej Bojar
In this paper we describe the CUNI translation system used for the unsupervised news shared task of the ACL 2019 Fourth Conference on Machine Translation (WMT19). We follow the strategy of Artetxe ae at. (2018b), creating a seed phrase-based system where the phrase table is initialized from cross-lingual embedding mappings trained on monolingual data, followed by a neural machine translation system trained on synthetic parallel data. The synthetic corpus was produced from a monolingual corpus by a tuned PBMT model refined through iterative back-translation. We further focus on the handling of named entities, i.e. the part of vocabulary where the cross-lingual embedding mapping suffers most. Our system reaches a BLEU score of 15.3 on the German-Czech WMT19 shared task.
ACL 2019. the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)
Ivana Kvapilíková, Dominik Macháček, Ondřej Bojar
In this paper we describe the CUNI translation system used for the unsupervised news shared task of the ACL 2019 Fourth Conference on Machine Translation (WMT19). We follow the strategy of Artetxe ae at. (2018b), creating a seed phrase-based system where the phrase table is initialized from cross-lingual embedding mappings trained on monolingual data, followed by a neural machine translation system trained on synthetic parallel data. The synthetic corpus was produced from a monolingual corpus by a tuned PBMT model refined through iterative back-translation. We further focus on the handling of named entities, i.e. the part of vocabulary where the cross-lingual embedding mapping suffers most. Our system reaches a BLEU score of 15.3 on the German-Czech WMT19 shared task.
22. Incorporating Word and Subword Units in Unsupervised Machine Translation Using Language Model Rescoring [PDF] 返回目录
ACL 2019. the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)
Zihan Liu, Yan Xu, Genta Indra Winata, Pascale Fung
This paper describes CAiRE’s submission to the unsupervised machine translation track of the WMT’19 news shared task from German to Czech. We leverage a phrase-based statistical machine translation (PBSMT) model and a pre-trained language model to combine word-level neural machine translation (NMT) and subword-level NMT models without using any parallel data. We propose to solve the morphological richness problem of languages by training byte-pair encoding (BPE) embeddings for German and Czech separately, and they are aligned using MUSE (Conneau et al., 2018). To ensure the fluency and consistency of translations, a rescoring mechanism is proposed that reuses the pre-trained language model to select the translation candidates generated through beam search. Moreover, a series of pre-processing and post-processing approaches are applied to improve the quality of final translations.
ACL 2019. the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)
Zihan Liu, Yan Xu, Genta Indra Winata, Pascale Fung
This paper describes CAiRE’s submission to the unsupervised machine translation track of the WMT’19 news shared task from German to Czech. We leverage a phrase-based statistical machine translation (PBSMT) model and a pre-trained language model to combine word-level neural machine translation (NMT) and subword-level NMT models without using any parallel data. We propose to solve the morphological richness problem of languages by training byte-pair encoding (BPE) embeddings for German and Czech separately, and they are aligned using MUSE (Conneau et al., 2018). To ensure the fluency and consistency of translations, a rescoring mechanism is proposed that reuses the pre-trained language model to select the translation candidates generated through beam search. Moreover, a series of pre-processing and post-processing approaches are applied to improve the quality of final translations.
23. NICT’s Unsupervised Neural and Statistical Machine Translation Systems for the WMT19 News Translation Task [PDF] 返回目录
ACL 2019. the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)
Benjamin Marie, Haipeng Sun, Rui Wang, Kehai Chen, Atsushi Fujita, Masao Utiyama, Eiichiro Sumita
This paper presents the NICT’s participation in the WMT19 unsupervised news translation task. We participated in the unsupervised translation direction: German-Czech. Our primary submission to the task is the result of a simple combination of our unsupervised neural and statistical machine translation systems. Our system is ranked first for the German-to-Czech translation task, using only the data provided by the organizers (“constraint’”), according to both BLEU-cased and human evaluation. We also performed contrastive experiments with other language pairs, namely, English-Gujarati and English-Kazakh, to better assess the effectiveness of unsupervised machine translation in for distant language pairs and in truly low-resource conditions.
ACL 2019. the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)
Benjamin Marie, Haipeng Sun, Rui Wang, Kehai Chen, Atsushi Fujita, Masao Utiyama, Eiichiro Sumita
This paper presents the NICT’s participation in the WMT19 unsupervised news translation task. We participated in the unsupervised translation direction: German-Czech. Our primary submission to the task is the result of a simple combination of our unsupervised neural and statistical machine translation systems. Our system is ranked first for the German-to-Czech translation task, using only the data provided by the organizers (“constraint’”), according to both BLEU-cased and human evaluation. We also performed contrastive experiments with other language pairs, namely, English-Gujarati and English-Kazakh, to better assess the effectiveness of unsupervised machine translation in for distant language pairs and in truly low-resource conditions.
24. The LMU Munich Unsupervised Machine Translation System for WMT19 [PDF] 返回目录
ACL 2019. the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)
Dario Stojanovski, Viktor Hangya, Matthias Huck, Alexander Fraser
We describe LMU Munich’s machine translation system for German→Czech translation which was used to participate in the WMT19 shared task on unsupervised news translation. We train our model using monolingual data only from both languages. The final model is an unsupervised neural model using established techniques for unsupervised translation such as denoising autoencoding and online back-translation. We bootstrap the model with masked language model pretraining and enhance it with back-translations from an unsupervised phrase-based system which is itself bootstrapped using unsupervised bilingual word embeddings.
ACL 2019. the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)
Dario Stojanovski, Viktor Hangya, Matthias Huck, Alexander Fraser
We describe LMU Munich’s machine translation system for German→Czech translation which was used to participate in the WMT19 shared task on unsupervised news translation. We train our model using monolingual data only from both languages. The final model is an unsupervised neural model using established techniques for unsupervised translation such as denoising autoencoding and online back-translation. We bootstrap the model with masked language model pretraining and enhance it with back-translations from an unsupervised phrase-based system which is itself bootstrapped using unsupervised bilingual word embeddings.
25. Explicit Cross-lingual Pre-training for Unsupervised Machine Translation [PDF] 返回目录
EMNLP 2019.
Shuo Ren, Yu Wu, Shujie Liu, Ming Zhou, Shuai Ma
Pre-training has proven to be effective in unsupervised machine translation due to its ability to model deep context information in cross-lingual scenarios. However, the cross-lingual information obtained from shared BPE spaces is inexplicit and limited. In this paper, we propose a novel cross-lingual pre-training method for unsupervised machine translation by incorporating explicit cross-lingual training signals. Specifically, we first calculate cross-lingual n-gram embeddings and infer an n-gram translation table from them. With those n-gram translation pairs, we propose a new pre-training model called Cross-lingual Masked Language Model (CMLM), which randomly chooses source n-grams in the input text stream and predicts their translation candidates at each time step. Experiments show that our method can incorporate beneficial cross-lingual information into pre-trained models. Taking pre-trained CMLM models as the encoder and decoder, we significantly improve the performance of unsupervised machine translation.
EMNLP 2019.
Shuo Ren, Yu Wu, Shujie Liu, Ming Zhou, Shuai Ma
Pre-training has proven to be effective in unsupervised machine translation due to its ability to model deep context information in cross-lingual scenarios. However, the cross-lingual information obtained from shared BPE spaces is inexplicit and limited. In this paper, we propose a novel cross-lingual pre-training method for unsupervised machine translation by incorporating explicit cross-lingual training signals. Specifically, we first calculate cross-lingual n-gram embeddings and infer an n-gram translation table from them. With those n-gram translation pairs, we propose a new pre-training model called Cross-lingual Masked Language Model (CMLM), which randomly chooses source n-grams in the input text stream and predicts their translation candidates at each time step. Experiments show that our method can incorporate beneficial cross-lingual information into pre-trained models. Taking pre-trained CMLM models as the encoder and decoder, we significantly improve the performance of unsupervised machine translation.
26. Unsupervised Domain Adaptation for Neural Machine Translation with Domain-Aware Feature Embeddings [PDF] 返回目录
EMNLP 2019.
Zi-Yi Dou, Junjie Hu, Antonios Anastasopoulos, Graham Neubig
The recent success of neural machine translation models relies on the availability of high quality, in-domain data. Domain adaptation is required when domain-specific data is scarce or nonexistent. Previous unsupervised domain adaptation strategies include training the model with in-domain copied monolingual or back-translated data. However, these methods use generic representations for text regardless of domain shift, which makes it infeasible for translation models to control outputs conditional on a specific domain. In this work, we propose an approach that adapts models with domain-aware feature embeddings, which are learned via an auxiliary language modeling task. Our approach allows the model to assign domain-specific representations to words and output sentences in the desired domain. Our empirical results demonstrate the effectiveness of the proposed strategy, achieving consistent improvements in multiple experimental settings. In addition, we show that combining our method with back translation can further improve the performance of the model.
EMNLP 2019.
Zi-Yi Dou, Junjie Hu, Antonios Anastasopoulos, Graham Neubig
The recent success of neural machine translation models relies on the availability of high quality, in-domain data. Domain adaptation is required when domain-specific data is scarce or nonexistent. Previous unsupervised domain adaptation strategies include training the model with in-domain copied monolingual or back-translated data. However, these methods use generic representations for text regardless of domain shift, which makes it infeasible for translation models to control outputs conditional on a specific domain. In this work, we propose an approach that adapts models with domain-aware feature embeddings, which are learned via an auxiliary language modeling task. Our approach allows the model to assign domain-specific representations to words and output sentences in the desired domain. Our empirical results demonstrate the effectiveness of the proposed strategy, achieving consistent improvements in multiple experimental settings. In addition, we show that combining our method with back translation can further improve the performance of the model.
27. IMaT: Unsupervised Text Attribute Transfer via Iterative Matching and Translation [PDF] 返回目录
EMNLP 2019.
Zhijing Jin, Di Jin, Jonas Mueller, Nicholas Matthews, Enrico Santus
Text attribute transfer aims to automatically rewrite sentences such that they possess certain linguistic attributes, while simultaneously preserving their semantic content. This task remains challenging due to a lack of supervised parallel data. Existing approaches try to explicitly disentangle content and attribute information, but this is difficult and often results in poor content-preservation and ungrammaticality. In contrast, we propose a simpler approach, Iterative Matching and Translation (IMaT), which: (1) constructs a pseudo-parallel corpus by aligning a subset of semantically similar sentences from the source and the target corpora; (2) applies a standard sequence-to-sequence model to learn the attribute transfer; (3) iteratively improves the learned transfer function by refining imperfections in the alignment. In sentiment modification and formality transfer tasks, our method outperforms complex state-of-the-art systems by a large margin. As an auxiliary contribution, we produce a publicly-available test set with human-generated transfer references.
EMNLP 2019.
Zhijing Jin, Di Jin, Jonas Mueller, Nicholas Matthews, Enrico Santus
Text attribute transfer aims to automatically rewrite sentences such that they possess certain linguistic attributes, while simultaneously preserving their semantic content. This task remains challenging due to a lack of supervised parallel data. Existing approaches try to explicitly disentangle content and attribute information, but this is difficult and often results in poor content-preservation and ungrammaticality. In contrast, we propose a simpler approach, Iterative Matching and Translation (IMaT), which: (1) constructs a pseudo-parallel corpus by aligning a subset of semantically similar sentences from the source and the target corpora; (2) applies a standard sequence-to-sequence model to learn the attribute transfer; (3) iteratively improves the learned transfer function by refining imperfections in the alignment. In sentiment modification and formality transfer tasks, our method outperforms complex state-of-the-art systems by a large margin. As an auxiliary contribution, we produce a publicly-available test set with human-generated transfer references.
28. Supervised and Unsupervised Machine Translation for Myanmar-English and Khmer-English [PDF] 返回目录
EMNLP 2019. the 6th Workshop on Asian Translation
Benjamin Marie, Hour Kaing, Aye Myat Mon, Chenchen Ding, Atsushi Fujita, Masao Utiyama, Eiichiro Sumita
This paper presents the NICT’s supervised and unsupervised machine translation systems for the WAT2019 Myanmar-English and Khmer-English translation tasks. For all the translation directions, we built state-of-the-art supervised neural (NMT) and statistical (SMT) machine translation systems, using monolingual data cleaned and normalized. Our combination of NMT and SMT performed among the best systems for the four translation directions. We also investigated the feasibility of unsupervised machine translation for low-resource and distant language pairs and confirmed observations of previous work showing that unsupervised MT is still largely unable to deal with them.
EMNLP 2019. the 6th Workshop on Asian Translation
Benjamin Marie, Hour Kaing, Aye Myat Mon, Chenchen Ding, Atsushi Fujita, Masao Utiyama, Eiichiro Sumita
This paper presents the NICT’s supervised and unsupervised machine translation systems for the WAT2019 Myanmar-English and Khmer-English translation tasks. For all the translation directions, we built state-of-the-art supervised neural (NMT) and statistical (SMT) machine translation systems, using monolingual data cleaned and normalized. Our combination of NMT and SMT performed among the best systems for the four translation directions. We also investigated the feasibility of unsupervised machine translation for low-resource and distant language pairs and confirmed observations of previous work showing that unsupervised MT is still largely unable to deal with them.
29. English-Myanmar Supervised and Unsupervised NMT: NICT’s Machine Translation Systems at WAT-2019 [PDF] 返回目录
EMNLP 2019. the 6th Workshop on Asian Translation
Rui Wang, Haipeng Sun, Kehai Chen, Chenchen Ding, Masao Utiyama, Eiichiro Sumita
This paper presents the NICT’s participation (team ID: NICT) in the 6th Workshop on Asian Translation (WAT-2019) shared translation task, specifically Myanmar (Burmese) - English task in both translation directions. We built neural machine translation (NMT) systems for these tasks. Our NMT systems were trained with language model pretraining. Back-translation technology is adopted to NMT. Our NMT systems rank the third in English-to-Myanmar and the second in Myanmar-to-English according to BLEU score.
EMNLP 2019. the 6th Workshop on Asian Translation
Rui Wang, Haipeng Sun, Kehai Chen, Chenchen Ding, Masao Utiyama, Eiichiro Sumita
This paper presents the NICT’s participation (team ID: NICT) in the 6th Workshop on Asian Translation (WAT-2019) shared translation task, specifically Myanmar (Burmese) - English task in both translation directions. We built neural machine translation (NMT) systems for these tasks. Our NMT systems were trained with language model pretraining. Back-translation technology is adopted to NMT. Our NMT systems rank the third in English-to-Myanmar and the second in Myanmar-to-English according to BLEU score.
30. Exemplar Guided Unsupervised Image-to-Image Translation with Semantic Consistency [PDF] 返回目录
ICLR 2019.
Liqian Ma, Xu Jia, Stamatios Georgoulis, Tinne Tuytelaars, Luc Van Gool
Image-to-image translation has recently received significant attention due to advances in deep learning. Most works focus on learning either a one-to-one mapping in an unsupervised way or a many-to-many mapping in a supervised way. However, a more practical setting is many-to-many mapping in an unsupervised way, which is harder due to the lack of supervision and the complex inner- and cross-domain variations. To alleviate these issues, we propose the Exemplar Guided & Semantically Consistent Image-to-image Translation (EGSC-IT) network which conditions the translation process on an exemplar image in the target domain. We assume that an image comprises of a content component which is shared across domains, and a style component specific to each domain. Under the guidance of an exemplar from the target domain we apply Adaptive Instance Normalization to the shared content component, which allows us to transfer the style information of the target domain to the source domain. To avoid semantic inconsistencies during translation that naturally appear due to the large inner- and cross-domain variations, we introduce the concept of feature masks that provide coarse semantic guidance without requiring the use of any semantic labels. Experimental results on various datasets show that EGSC-IT does not only translate the source image to diverse instances in the target domain, but also preserves the semantic consistency during the process.
ICLR 2019.
Liqian Ma, Xu Jia, Stamatios Georgoulis, Tinne Tuytelaars, Luc Van Gool
Image-to-image translation has recently received significant attention due to advances in deep learning. Most works focus on learning either a one-to-one mapping in an unsupervised way or a many-to-many mapping in a supervised way. However, a more practical setting is many-to-many mapping in an unsupervised way, which is harder due to the lack of supervision and the complex inner- and cross-domain variations. To alleviate these issues, we propose the Exemplar Guided & Semantically Consistent Image-to-image Translation (EGSC-IT) network which conditions the translation process on an exemplar image in the target domain. We assume that an image comprises of a content component which is shared across domains, and a style component specific to each domain. Under the guidance of an exemplar from the target domain we apply Adaptive Instance Normalization to the shared content component, which allows us to transfer the style information of the target domain to the source domain. To avoid semantic inconsistencies during translation that naturally appear due to the large inner- and cross-domain variations, we introduce the concept of feature masks that provide coarse semantic guidance without requiring the use of any semantic labels. Experimental results on various datasets show that EGSC-IT does not only translate the source image to diverse instances in the target domain, but also preserves the semantic consistency during the process.
31. Polygon-Net: A General Framework for Jointly Boosting Multiple Unsupervised Neural Machine Translation Models [PDF] 返回目录
IJCAI 2019.
Chang Xu, Tao Qin, Gang Wang, Tie-Yan Liu
Neural machine translation (NMT) has achieved great success. However, collecting large-scale parallel data for training is costly and laborious. Recently, unsupervised neural machine translation has attracted more and more attention, due to its demand for monolingual corpus only, which is common and easy to obtain, and its great potentials for the low-resource or even zero-resource machine translation. In this work, we propose a general framework called Polygon-Net, which leverages multi auxiliary languages for jointly boosting unsupervised neural machine translation models. Specifically, we design a novel loss function for multi-language unsupervised neural machine translation. In addition, different from the literature that just updating one or two models individually, Polygon-Net enables multiple unsupervised models in the framework to update in turn and enhance each other for the first time. In this way, multiple unsupervised translation models are associated with each other for training to achieve better performance. Experiments on the benchmark datasets including UN Corpus and WMT show that our approach significantly improves over the two-language based methods, and achieves better performance with more languages introduced to the framework.
IJCAI 2019.
Chang Xu, Tao Qin, Gang Wang, Tie-Yan Liu
Neural machine translation (NMT) has achieved great success. However, collecting large-scale parallel data for training is costly and laborious. Recently, unsupervised neural machine translation has attracted more and more attention, due to its demand for monolingual corpus only, which is common and easy to obtain, and its great potentials for the low-resource or even zero-resource machine translation. In this work, we propose a general framework called Polygon-Net, which leverages multi auxiliary languages for jointly boosting unsupervised neural machine translation models. Specifically, we design a novel loss function for multi-language unsupervised neural machine translation. In addition, different from the literature that just updating one or two models individually, Polygon-Net enables multiple unsupervised models in the framework to update in turn and enhance each other for the first time. In this way, multiple unsupervised translation models are associated with each other for training to achieve better performance. Experiments on the benchmark datasets including UN Corpus and WMT show that our approach significantly improves over the two-language based methods, and achieves better performance with more languages introduced to the framework.
32. Extract and Edit: An Alternative to Back-Translation for Unsupervised Neural Machine Translation [PDF] 返回目录
NAACL 2019.
Jiawei Wu, Xin Wang, William Yang Wang
The overreliance on large parallel corpora significantly limits the applicability of machine translation systems to the majority of language pairs. Back-translation has been dominantly used in previous approaches for unsupervised neural machine translation, where pseudo sentence pairs are generated to train the models with a reconstruction loss. However, the pseudo sentences are usually of low quality as translation errors accumulate during training. To avoid this fundamental issue, we propose an alternative but more effective approach, extract-edit, to extract and then edit real sentences from the target monolingual corpora. Furthermore, we introduce a comparative translation loss to evaluate the translated target sentences and thus train the unsupervised translation systems. Experiments show that the proposed approach consistently outperforms the previous state-of-the-art unsupervised machine translation systems across two benchmarks (English-French and English-German) and two low-resource language pairs (English-Romanian and English-Russian) by more than 2 (up to 3.63) BLEU points.
NAACL 2019.
Jiawei Wu, Xin Wang, William Yang Wang
The overreliance on large parallel corpora significantly limits the applicability of machine translation systems to the majority of language pairs. Back-translation has been dominantly used in previous approaches for unsupervised neural machine translation, where pseudo sentence pairs are generated to train the models with a reconstruction loss. However, the pseudo sentences are usually of low quality as translation errors accumulate during training. To avoid this fundamental issue, we propose an alternative but more effective approach, extract-edit, to extract and then edit real sentences from the target monolingual corpora. Furthermore, we introduce a comparative translation loss to evaluate the translated target sentences and thus train the unsupervised translation systems. Experiments show that the proposed approach consistently outperforms the previous state-of-the-art unsupervised machine translation systems across two benchmarks (English-French and English-German) and two low-resource language pairs (English-Romanian and English-Russian) by more than 2 (up to 3.63) BLEU points.
33. Unsupervised Extraction of Partial Translations for Neural Machine Translation [PDF] 返回目录
NAACL 2019.
Benjamin Marie, Atsushi Fujita
In neural machine translation (NMT), monolingual data are usually exploited through a so-called back-translation: sentences in the target language are translated into the source language to synthesize new parallel data. While this method provides more training data to better model the target language, on the source side, it only exploits translations that the NMT system is already able to generate using a model trained on existing parallel data. In this work, we assume that new translation knowledge can be extracted from monolingual data, without relying at all on existing parallel data. We propose a new algorithm for extracting from monolingual data what we call partial translations: pairs of source and target sentences that contain sequences of tokens that are translations of each other. Our algorithm is fully unsupervised and takes only source and target monolingual data as input. Our empirical evaluation points out that our partial translations can be used in combination with back-translation to further improve NMT models. Furthermore, while partial translations are particularly useful for low-resource language pairs, they can also be successfully exploited in resource-rich scenarios to improve translation quality.
NAACL 2019.
Benjamin Marie, Atsushi Fujita
In neural machine translation (NMT), monolingual data are usually exploited through a so-called back-translation: sentences in the target language are translated into the source language to synthesize new parallel data. While this method provides more training data to better model the target language, on the source side, it only exploits translations that the NMT system is already able to generate using a model trained on existing parallel data. In this work, we assume that new translation knowledge can be extracted from monolingual data, without relying at all on existing parallel data. We propose a new algorithm for extracting from monolingual data what we call partial translations: pairs of source and target sentences that contain sequences of tokens that are translations of each other. Our algorithm is fully unsupervised and takes only source and target monolingual data as input. Our empirical evaluation points out that our partial translations can be used in combination with back-translation to further improve NMT models. Furthermore, while partial translations are particularly useful for low-resource language pairs, they can also be successfully exploited in resource-rich scenarios to improve translation quality.
34. Revisiting Adversarial Autoencoder for Unsupervised Word Translation with Cycle Consistency and Improved Training [PDF] 返回目录
NAACL 2019.
Tasnim Mohiuddin, Shafiq Joty
Adversarial training has shown impressive success in learning bilingual dictionary without any parallel data by mapping monolingual embeddings to a shared space. However, recent work has shown superior performance for non-adversarial methods in more challenging language pairs. In this work, we revisit adversarial autoencoder for unsupervised word translation and propose two novel extensions to it that yield more stable training and improved results. Our method includes regularization terms to enforce cycle consistency and input reconstruction, and puts the target encoders as an adversary against the corresponding discriminator. Extensive experimentations with European, non-European and low-resource languages show that our method is more robust and achieves better performance than recently proposed adversarial and non-adversarial approaches.
NAACL 2019.
Tasnim Mohiuddin, Shafiq Joty
Adversarial training has shown impressive success in learning bilingual dictionary without any parallel data by mapping monolingual embeddings to a shared space. However, recent work has shown superior performance for non-adversarial methods in more challenging language pairs. In this work, we revisit adversarial autoencoder for unsupervised word translation and propose two novel extensions to it that yield more stable training and improved results. Our method includes regularization terms to enforce cycle consistency and input reconstruction, and puts the target encoders as an adversary against the corresponding discriminator. Extensive experimentations with European, non-European and low-resource languages show that our method is more robust and achieves better performance than recently proposed adversarial and non-adversarial approaches.
35. Comparing Unsupervised Word Translation Methods Step by Step [PDF] 返回目录
NeurIPS 2019.
Mareike Hartmann, Yova Kementchedjhieva, Anders Søgaard
Cross-lingual word vector space alignment is the task of mapping the vocabularies of two languages into a shared semantic space, which can be used for dictionary induction, unsupervised machine translation, and transfer learning. In the unsupervised regime, an initial seed dictionary is learned in the absence of any known correspondences between words, through {\bf distribution matching}, and the seed dictionary is then used to supervise the induction of the final alignment in what is typically referred to as a (possibly iterative) {\bf refinement} step. We focus on the first step and compare distribution matching techniques in the context of language pairs for which mixed training stability and evaluation scores have been reported. We show that, surprisingly, when looking at this initial step in isolation, vanilla GANs are superior to more recent methods, both in terms of precision and robustness. The improvements reported by more recent methods thus stem from the refinement techniques, and we show that we can obtain state-of-the-art performance combining vanilla GANs with such refinement techniques.
NeurIPS 2019.
Mareike Hartmann, Yova Kementchedjhieva, Anders Søgaard
Cross-lingual word vector space alignment is the task of mapping the vocabularies of two languages into a shared semantic space, which can be used for dictionary induction, unsupervised machine translation, and transfer learning. In the unsupervised regime, an initial seed dictionary is learned in the absence of any known correspondences between words, through {\bf distribution matching}, and the seed dictionary is then used to supervise the induction of the final alignment in what is typically referred to as a (possibly iterative) {\bf refinement} step. We focus on the first step and compare distribution matching techniques in the context of language pairs for which mixed training stability and evaluation scores have been reported. We show that, surprisingly, when looking at this initial step in isolation, vanilla GANs are superior to more recent methods, both in terms of precision and robustness. The improvements reported by more recent methods thus stem from the refinement techniques, and we show that we can obtain state-of-the-art performance combining vanilla GANs with such refinement techniques.
36. Unsupervised Neural Machine Translation with Weight Sharing [PDF] 返回目录
ACL 2018. Long Papers
Zhen Yang, Wei Chen, Feng Wang, Bo Xu
Unsupervised neural machine translation (NMT) is a recently proposed approach for machine translation which aims to train the model without using any labeled data. The models proposed for unsupervised NMT often use only one shared encoder to map the pairs of sentences from different languages to a shared-latent space, which is weak in keeping the unique and internal characteristics of each language, such as the style, terminology, and sentence structure. To address this issue, we introduce an extension by utilizing two independent encoders but sharing some partial weights which are responsible for extracting high-level representations of the input sentences. Besides, two different generative adversarial networks (GANs), namely the local GAN and global GAN, are proposed to enhance the cross-language translation. With this new approach, we achieve significant improvements on English-German, English-French and Chinese-to-English translation tasks.
ACL 2018. Long Papers
Zhen Yang, Wei Chen, Feng Wang, Bo Xu
Unsupervised neural machine translation (NMT) is a recently proposed approach for machine translation which aims to train the model without using any labeled data. The models proposed for unsupervised NMT often use only one shared encoder to map the pairs of sentences from different languages to a shared-latent space, which is weak in keeping the unique and internal characteristics of each language, such as the style, terminology, and sentence structure. To address this issue, we introduce an extension by utilizing two independent encoders but sharing some partial weights which are responsible for extracting high-level representations of the input sentences. Besides, two different generative adversarial networks (GANs), namely the local GAN and global GAN, are proposed to enhance the cross-language translation. With this new approach, we achieve significant improvements on English-German, English-French and Chinese-to-English translation tasks.
37. Unsupervised Source Hierarchies for Low-Resource Neural Machine Translation [PDF] 返回目录
ACL 2018. the Workshop on the Relevance of Linguistic Structure in Neural Architectures for NLP
Anna Currey, Kenneth Heafield
Incorporating source syntactic information into neural machine translation (NMT) has recently proven successful (Eriguchi et al., 2016; Luong et al., 2016). However, this is generally done using an outside parser to syntactically annotate the training data, making this technique difficult to use for languages or domains for which a reliable parser is not available. In this paper, we introduce an unsupervised tree-to-sequence (tree2seq) model for neural machine translation; this model is able to induce an unsupervised hierarchical structure on the source sentence based on the downstream task of neural machine translation. We adapt the Gumbel tree-LSTM of Choi et al. (2018) to NMT in order to create the encoder. We evaluate our model against sequential and supervised parsing baselines on three low- and medium-resource language pairs. For low-resource cases, the unsupervised tree2seq encoder significantly outperforms the baselines; no improvements are seen for medium-resource translation.
ACL 2018. the Workshop on the Relevance of Linguistic Structure in Neural Architectures for NLP
Anna Currey, Kenneth Heafield
Incorporating source syntactic information into neural machine translation (NMT) has recently proven successful (Eriguchi et al., 2016; Luong et al., 2016). However, this is generally done using an outside parser to syntactically annotate the training data, making this technique difficult to use for languages or domains for which a reliable parser is not available. In this paper, we introduce an unsupervised tree-to-sequence (tree2seq) model for neural machine translation; this model is able to induce an unsupervised hierarchical structure on the source sentence based on the downstream task of neural machine translation. We adapt the Gumbel tree-LSTM of Choi et al. (2018) to NMT in order to create the encoder. We evaluate our model against sequential and supervised parsing baselines on three low- and medium-resource language pairs. For low-resource cases, the unsupervised tree2seq encoder significantly outperforms the baselines; no improvements are seen for medium-resource translation.
38. Non-Adversarial Unsupervised Word Translation [PDF] 返回目录
EMNLP 2018.
Yedid Hoshen, Lior Wolf
Unsupervised word translation from non-parallel inter-lingual corpora has attracted much research interest. Very recently, neural network methods trained with adversarial loss functions achieved high accuracy on this task. Despite the impressive success of the recent techniques, they suffer from the typical drawbacks of generative adversarial models: sensitivity to hyper-parameters, long training time and lack of interpretability. In this paper, we make the observation that two sufficiently similar distributions can be aligned correctly with iterative matching methods. We present a novel method that first aligns the second moment of the word distributions of the two languages and then iteratively refines the alignment. Extensive experiments on word translation of European and Non-European languages show that our method achieves better performance than recent state-of-the-art deep adversarial approaches and is competitive with the supervised baseline. It is also efficient, easy to parallelize on CPU and interpretable.
EMNLP 2018.
Yedid Hoshen, Lior Wolf
Unsupervised word translation from non-parallel inter-lingual corpora has attracted much research interest. Very recently, neural network methods trained with adversarial loss functions achieved high accuracy on this task. Despite the impressive success of the recent techniques, they suffer from the typical drawbacks of generative adversarial models: sensitivity to hyper-parameters, long training time and lack of interpretability. In this paper, we make the observation that two sufficiently similar distributions can be aligned correctly with iterative matching methods. We present a novel method that first aligns the second moment of the word distributions of the two languages and then iteratively refines the alignment. Extensive experiments on word translation of European and Non-European languages show that our method achieves better performance than recent state-of-the-art deep adversarial approaches and is competitive with the supervised baseline. It is also efficient, easy to parallelize on CPU and interpretable.
39. Learning Unsupervised Word Translations Without Adversaries [PDF] 返回目录
EMNLP 2018.
Tanmoy Mukherjee, Makoto Yamada, Timothy Hospedales
Word translation, or bilingual dictionary induction, is an important capability that impacts many multilingual language processing tasks. Recent research has shown that word translation can be achieved in an unsupervised manner, without parallel seed dictionaries or aligned corpora. However, state of the art methods unsupervised bilingual dictionary induction are based on generative adversarial models, and as such suffer from their well known problems of instability and hyper-parameter sensitivity. We present a statistical dependency-based approach to bilingual dictionary induction that is unsupervised – no seed dictionary or parallel corpora required; and introduces no adversary – therefore being much easier to train. Our method performs comparably to adversarial alternatives and outperforms prior non-adversarial methods.
EMNLP 2018.
Tanmoy Mukherjee, Makoto Yamada, Timothy Hospedales
Word translation, or bilingual dictionary induction, is an important capability that impacts many multilingual language processing tasks. Recent research has shown that word translation can be achieved in an unsupervised manner, without parallel seed dictionaries or aligned corpora. However, state of the art methods unsupervised bilingual dictionary induction are based on generative adversarial models, and as such suffer from their well known problems of instability and hyper-parameter sensitivity. We present a statistical dependency-based approach to bilingual dictionary induction that is unsupervised – no seed dictionary or parallel corpora required; and introduces no adversary – therefore being much easier to train. Our method performs comparably to adversarial alternatives and outperforms prior non-adversarial methods.
40. Improving Unsupervised Word-by-Word Translation with Language Model and Denoising Autoencoder [PDF] 返回目录
EMNLP 2018.
Yunsu Kim, Jiahui Geng, Hermann Ney
Unsupervised learning of cross-lingual word embedding offers elegant matching of words across languages, but has fundamental limitations in translating sentences. In this paper, we propose simple yet effective methods to improve word-by-word translation of cross-lingual embeddings, using only monolingual corpora but without any back-translation. We integrate a language model for context-aware search, and use a novel denoising autoencoder to handle reordering. Our system surpasses state-of-the-art unsupervised translation systems without costly iterative training. We also analyze the effect of vocabulary size and denoising type on the translation performance, which provides better understanding of learning the cross-lingual word embedding and its usage in translation.
EMNLP 2018.
Yunsu Kim, Jiahui Geng, Hermann Ney
Unsupervised learning of cross-lingual word embedding offers elegant matching of words across languages, but has fundamental limitations in translating sentences. In this paper, we propose simple yet effective methods to improve word-by-word translation of cross-lingual embeddings, using only monolingual corpora but without any back-translation. We integrate a language model for context-aware search, and use a novel denoising autoencoder to handle reordering. Our system surpasses state-of-the-art unsupervised translation systems without costly iterative training. We also analyze the effect of vocabulary size and denoising type on the translation performance, which provides better understanding of learning the cross-lingual word embedding and its usage in translation.
41. Unsupervised Statistical Machine Translation [PDF] 返回目录
EMNLP 2018.
Mikel Artetxe, Gorka Labaka, Eneko Agirre
While modern machine translation has relied on large parallel corpora, a recent line of work has managed to train Neural Machine Translation (NMT) systems from monolingual corpora only (Artetxe et al., 2018c; Lample et al., 2018). Despite the potential of this approach for low-resource settings, existing systems are far behind their supervised counterparts, limiting their practical interest. In this paper, we propose an alternative approach based on phrase-based Statistical Machine Translation (SMT) that significantly closes the gap with supervised systems. Our method profits from the modular architecture of SMT: we first induce a phrase table from monolingual corpora through cross-lingual embedding mappings, combine it with an n-gram language model, and fine-tune hyperparameters through an unsupervised MERT variant. In addition, iterative backtranslation improves results further, yielding, for instance, 14.08 and 26.22 BLEU points in WMT 2014 English-German and English-French, respectively, an improvement of more than 7-10 BLEU points over previous unsupervised systems, and closing the gap with supervised SMT (Moses trained on Europarl) down to 2-5 BLEU points. Our implementation is available at https://github.com/artetxem/monoses.
EMNLP 2018.
Mikel Artetxe, Gorka Labaka, Eneko Agirre
While modern machine translation has relied on large parallel corpora, a recent line of work has managed to train Neural Machine Translation (NMT) systems from monolingual corpora only (Artetxe et al., 2018c; Lample et al., 2018). Despite the potential of this approach for low-resource settings, existing systems are far behind their supervised counterparts, limiting their practical interest. In this paper, we propose an alternative approach based on phrase-based Statistical Machine Translation (SMT) that significantly closes the gap with supervised systems. Our method profits from the modular architecture of SMT: we first induce a phrase table from monolingual corpora through cross-lingual embedding mappings, combine it with an n-gram language model, and fine-tune hyperparameters through an unsupervised MERT variant. In addition, iterative backtranslation improves results further, yielding, for instance, 14.08 and 26.22 BLEU points in WMT 2014 English-German and English-French, respectively, an improvement of more than 7-10 BLEU points over previous unsupervised systems, and closing the gap with supervised SMT (Moses trained on Europarl) down to 2-5 BLEU points. Our implementation is available at https://github.com/artetxem/monoses.
42. Phrase-Based & Neural Unsupervised Machine Translation [PDF] 返回目录
EMNLP 2018.
Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic Denoyer, Marc’Aurelio Ranzato
Machine translation systems achieve near human-level performance on some languages, yet their effectiveness strongly relies on the availability of large amounts of parallel sentences, which hinders their applicability to the majority of language pairs. This work investigates how to learn to translate when having access to only large monolingual corpora in each language. We propose two model variants, a neural and a phrase-based model. Both versions leverage a careful initialization of the parameters, the denoising effect of language models and automatic generation of parallel data by iterative back-translation. These models are significantly better than methods from the literature, while being simpler and having fewer hyper-parameters. On the widely used WMT’14 English-French and WMT’16 German-English benchmarks, our models respectively obtain 28.1 and 25.2 BLEU points without using a single parallel sentence, outperforming the state of the art by more than 11 BLEU points. On low-resource languages like English-Urdu and English-Romanian, our methods achieve even better results than semi-supervised and supervised approaches leveraging the paucity of available bitexts. Our code for NMT and PBSMT is publicly available.
EMNLP 2018.
Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic Denoyer, Marc’Aurelio Ranzato
Machine translation systems achieve near human-level performance on some languages, yet their effectiveness strongly relies on the availability of large amounts of parallel sentences, which hinders their applicability to the majority of language pairs. This work investigates how to learn to translate when having access to only large monolingual corpora in each language. We propose two model variants, a neural and a phrase-based model. Both versions leverage a careful initialization of the parameters, the denoising effect of language models and automatic generation of parallel data by iterative back-translation. These models are significantly better than methods from the literature, while being simpler and having fewer hyper-parameters. On the widely used WMT’14 English-French and WMT’16 German-English benchmarks, our models respectively obtain 28.1 and 25.2 BLEU points without using a single parallel sentence, outperforming the state of the art by more than 11 BLEU points. On low-resource languages like English-Urdu and English-Romanian, our methods achieve even better results than semi-supervised and supervised approaches leveraging the paucity of available bitexts. Our code for NMT and PBSMT is publicly available.
43. Phrase-based Unsupervised Machine Translation with Compositional Phrase Embeddings [PDF] 返回目录
EMNLP 2018. the Third Conference on Machine Translation: Shared Task Papers
Maksym Del, Andre Tättar, Mark Fishel
This paper describes the University of Tartu’s submission to the unsupervised machine translation track of WMT18 news translation shared task. We build several baseline translation systems for both directions of the English-Estonian language pair using monolingual data only; the systems belong to the phrase-based unsupervised machine translation paradigm where we experimented with phrase lengths of up to 3. As a main contribution, we performed a set of standalone experiments with compositional phrase embeddings as a substitute for phrases as individual vocabulary entries. Results show that reasonable n-gram vectors can be obtained by simply summing up individual word vectors which retains or improves the performance of phrase-based unsupervised machine tranlation systems while avoiding limitations of atomic phrase vectors.
EMNLP 2018. the Third Conference on Machine Translation: Shared Task Papers
Maksym Del, Andre Tättar, Mark Fishel
This paper describes the University of Tartu’s submission to the unsupervised machine translation track of WMT18 news translation shared task. We build several baseline translation systems for both directions of the English-Estonian language pair using monolingual data only; the systems belong to the phrase-based unsupervised machine translation paradigm where we experimented with phrase lengths of up to 3. As a main contribution, we performed a set of standalone experiments with compositional phrase embeddings as a substitute for phrases as individual vocabulary entries. Results show that reasonable n-gram vectors can be obtained by simply summing up individual word vectors which retains or improves the performance of phrase-based unsupervised machine tranlation systems while avoiding limitations of atomic phrase vectors.
44. The RWTH Aachen University English-German and German-English Unsupervised Neural Machine Translation Systems for WMT 2018 [PDF] 返回目录
EMNLP 2018. the Third Conference on Machine Translation: Shared Task Papers
Miguel Graça, Yunsu Kim, Julian Schamper, Jiahui Geng, Hermann Ney
This paper describes the unsupervised neural machine translation (NMT) systems of the RWTH Aachen University developed for the English ↔ German news translation task of the EMNLP 2018 Third Conference on Machine Translation (WMT 2018). Our work is based on iterative back-translation using a shared encoder-decoder NMT model. We extensively compare different vocabulary types, word embedding initialization schemes and optimization methods for our model. We also investigate gating and weight normalization for the word embedding layer.
EMNLP 2018. the Third Conference on Machine Translation: Shared Task Papers
Miguel Graça, Yunsu Kim, Julian Schamper, Jiahui Geng, Hermann Ney
This paper describes the unsupervised neural machine translation (NMT) systems of the RWTH Aachen University developed for the English ↔ German news translation task of the EMNLP 2018 Third Conference on Machine Translation (WMT 2018). Our work is based on iterative back-translation using a shared encoder-decoder NMT model. We extensively compare different vocabulary types, word embedding initialization schemes and optimization methods for our model. We also investigate gating and weight normalization for the word embedding layer.
45. The LMU Munich Unsupervised Machine Translation Systems [PDF] 返回目录
EMNLP 2018. the Third Conference on Machine Translation: Shared Task Papers
Dario Stojanovski, Viktor Hangya, Matthias Huck, Alexander Fraser
We describe LMU Munich’s unsupervised machine translation systems for English↔German translation. These systems were used to participate in the WMT18 news translation shared task and more specifically, for the unsupervised learning sub-track. The systems are trained on English and German monolingual data only and exploit and combine previously proposed techniques such as using word-by-word translated data based on bilingual word embeddings, denoising and on-the-fly backtranslation.
EMNLP 2018. the Third Conference on Machine Translation: Shared Task Papers
Dario Stojanovski, Viktor Hangya, Matthias Huck, Alexander Fraser
We describe LMU Munich’s unsupervised machine translation systems for English↔German translation. These systems were used to participate in the WMT18 news translation shared task and more specifically, for the unsupervised learning sub-track. The systems are trained on English and German monolingual data only and exploit and combine previously proposed techniques such as using word-by-word translated data based on bilingual word embeddings, denoising and on-the-fly backtranslation.
46. Unsupervised Machine Translation Using Monolingual Corpora Only [PDF] 返回目录
ICLR 2018.
Guillaume Lample, Alexis Conneau, Ludovic Denoyer, Marc'Aurelio Ranzato
Machine translation has recently achieved impressive performance thanks to recent advances in deep learning and the availability of large-scale parallel corpora. There have been numerous attempts to extend these successes to low-resource language pairs, yet requiring tens of thousands of parallel sentences. In this work, we take this research direction to the extreme and investigate whether it is possible to learn to translate even without any parallel data. We propose a model that takes sentences from monolingual corpora in two different languages and maps them into the same latent space. By learning to reconstruct in both languages from this shared feature space, the model effectively learns to translate without using any labeled data. We demonstrate our model on two widely used datasets and two language pairs, reporting BLEU scores of 32.8 and 15.1 on the Multi30k and WMT English-French datasets, without using even a single parallel sentence at training time.
ICLR 2018.
Guillaume Lample, Alexis Conneau, Ludovic Denoyer, Marc'Aurelio Ranzato
Machine translation has recently achieved impressive performance thanks to recent advances in deep learning and the availability of large-scale parallel corpora. There have been numerous attempts to extend these successes to low-resource language pairs, yet requiring tens of thousands of parallel sentences. In this work, we take this research direction to the extreme and investigate whether it is possible to learn to translate even without any parallel data. We propose a model that takes sentences from monolingual corpora in two different languages and maps them into the same latent space. By learning to reconstruct in both languages from this shared feature space, the model effectively learns to translate without using any labeled data. We demonstrate our model on two widely used datasets and two language pairs, reporting BLEU scores of 32.8 and 15.1 on the Multi30k and WMT English-French datasets, without using even a single parallel sentence at training time.
47. Unsupervised Neural Machine Translation [PDF] 返回目录
ICLR 2018.
Mikel Artetxe, Gorka Labaka, Eneko Agirre, Kyunghyun Cho
In spite of the recent success of neural machine translation (NMT) in standard benchmarks, the lack of large parallel corpora poses a major practical problem for many language pairs. There have been several proposals to alleviate this issue with, for instance, triangulation and semi-supervised learning techniques, but they still require a strong cross-lingual signal. In this work, we completely remove the need of parallel data and propose a novel method to train an NMT system in a completely unsupervised manner, relying on nothing but monolingual corpora. Our model builds upon the recent work on unsupervised embedding mappings, and consists of a slightly modified attentional encoder-decoder model that can be trained on monolingual corpora alone using a combination of denoising and backtranslation. Despite the simplicity of the approach, our system obtains 15.56 and 10.21 BLEU points in WMT 2014 French-to-English and German-to-English translation. The model can also profit from small parallel corpora, and attains 21.81 and 15.24 points when combined with 100,000 parallel sentences, respectively. Our implementation is released as an open source project.
ICLR 2018.
Mikel Artetxe, Gorka Labaka, Eneko Agirre, Kyunghyun Cho
In spite of the recent success of neural machine translation (NMT) in standard benchmarks, the lack of large parallel corpora poses a major practical problem for many language pairs. There have been several proposals to alleviate this issue with, for instance, triangulation and semi-supervised learning techniques, but they still require a strong cross-lingual signal. In this work, we completely remove the need of parallel data and propose a novel method to train an NMT system in a completely unsupervised manner, relying on nothing but monolingual corpora. Our model builds upon the recent work on unsupervised embedding mappings, and consists of a slightly modified attentional encoder-decoder model that can be trained on monolingual corpora alone using a combination of denoising and backtranslation. Despite the simplicity of the approach, our system obtains 15.56 and 10.21 BLEU points in WMT 2014 French-to-English and German-to-English translation. The model can also profit from small parallel corpora, and attains 21.81 and 15.24 points when combined with 100,000 parallel sentences, respectively. Our implementation is released as an open source project.
48. One-Shot Unsupervised Cross Domain Translation [PDF] 返回目录
NeurIPS 2018.
Sagie Benaim, Lior Wolf
Given a single image $x$ from domain $A$ and a set of images from domain $B$, our task is to generate the analogous of $x$ in $B$. We argue that this task could be a key AI capability that underlines the ability of cognitive agents to act in the world and present empirical evidence that the existing unsupervised domain translation methods fail on this task. Our method follows a two step process. First, a variational autoencoder for domain $B$ is trained. Then, given the new sample $x$, we create a variational autoencoder for domain $A$ by adapting the layers that are close to the image in order to directly fit $x$, and only indirectly adapt the other layers. Our experiments indicate that the new method does as well, when trained on one sample $x$, as the existing domain transfer methods, when these enjoy a multitude of training samples from domain $A$. Our code is made publicly available at https://github.com/sagiebenaim/OneShotTranslation
NeurIPS 2018.
Sagie Benaim, Lior Wolf
Given a single image $x$ from domain $A$ and a set of images from domain $B$, our task is to generate the analogous of $x$ in $B$. We argue that this task could be a key AI capability that underlines the ability of cognitive agents to act in the world and present empirical evidence that the existing unsupervised domain translation methods fail on this task. Our method follows a two step process. First, a variational autoencoder for domain $B$ is trained. Then, given the new sample $x$, we create a variational autoencoder for domain $A$ by adapting the layers that are close to the image in order to directly fit $x$, and only indirectly adapt the other layers. Our experiments indicate that the new method does as well, when trained on one sample $x$, as the existing domain transfer methods, when these enjoy a multitude of training samples from domain $A$. Our code is made publicly available at https://github.com/sagiebenaim/OneShotTranslation
49. Unsupervised Attention-guided Image-to-Image Translation [PDF] 返回目录
NeurIPS 2018.
Youssef Alami Mejjati, Christian Richardt, James Tompkin, Darren Cosker, Kwang In Kim
Current unsupervised image-to-image translation techniques struggle to focus their attention on individual objects without altering the background or the way multiple objects interact within a scene. Motivated by the important role of attention in human perception, we tackle this limitation by introducing unsupervised attention mechanisms which are jointly adversarially trained with the generators and discriminators. We empirically demonstrate that our approach is able to attend to relevant regions in the image without requiring any additional supervision, and that by doing so it achieves more realistic mappings compared to recent approaches.
NeurIPS 2018.
Youssef Alami Mejjati, Christian Richardt, James Tompkin, Darren Cosker, Kwang In Kim
Current unsupervised image-to-image translation techniques struggle to focus their attention on individual objects without altering the background or the way multiple objects interact within a scene. Motivated by the important role of attention in human perception, we tackle this limitation by introducing unsupervised attention mechanisms which are jointly adversarially trained with the generators and discriminators. We empirically demonstrate that our approach is able to attend to relevant regions in the image without requiring any additional supervision, and that by doing so it achieves more realistic mappings compared to recent approaches.
50. Unsupervised Image-to-Image Translation Using Domain-Specific Variational Information Bound [PDF] 返回目录
NeurIPS 2018.
Hadi Kazemi, Sobhan Soleymani, Fariborz Taherkhani, Seyed Iranmanesh, Nasser Nasrabadi
Unsupervised image-to-image translation is a class of computer vision problems which aims at modeling conditional distribution of images in the target domain, given a set of unpaired images in the source and target domains. An image in the source domain might have multiple representations in the target domain. Therefore, ambiguity in modeling of the conditional distribution arises, specially when the images in the source and target domains come from different modalities. Current approaches mostly rely on simplifying assumptions to map both domains into a shared-latent space. Consequently, they are only able to model the domain-invariant information between the two modalities. These approaches cannot model domain-specific information which has no representation in the target domain. In this work, we propose an unsupervised image-to-image translation framework which maximizes a domain-specific variational information bound and learns the target domain-invariant representation of the two domain. The proposed framework makes it possible to map a single source image into multiple images in the target domain, utilizing several target domain-specific codes sampled randomly from the prior distribution, or extracted from reference images.
NeurIPS 2018.
Hadi Kazemi, Sobhan Soleymani, Fariborz Taherkhani, Seyed Iranmanesh, Nasser Nasrabadi
Unsupervised image-to-image translation is a class of computer vision problems which aims at modeling conditional distribution of images in the target domain, given a set of unpaired images in the source and target domains. An image in the source domain might have multiple representations in the target domain. Therefore, ambiguity in modeling of the conditional distribution arises, specially when the images in the source and target domains come from different modalities. Current approaches mostly rely on simplifying assumptions to map both domains into a shared-latent space. Consequently, they are only able to model the domain-invariant information between the two modalities. These approaches cannot model domain-specific information which has no representation in the target domain. In this work, we propose an unsupervised image-to-image translation framework which maximizes a domain-specific variational information bound and learns the target domain-invariant representation of the two domain. The proposed framework makes it possible to map a single source image into multiple images in the target domain, utilizing several target domain-specific codes sampled randomly from the prior distribution, or extracted from reference images.
51. Unsupervised Image-to-Image Translation Networks [PDF] 返回目录
NeurIPS 2017.
Ming-Yu Liu, Thomas Breuel, Jan Kautz
Unsupervised image-to-image translation aims at learning a joint distribution of images in different domains by using images from the marginal distributions in individual domains. Since there exists an infinite set of joint distributions that can arrive the given marginal distributions, one could infer nothing about the joint distribution from the marginal distributions without additional assumptions. To address the problem, we make a shared-latent space assumption and propose an unsupervised image-to-image translation framework based on Coupled GANs. We compare the proposed framework with competing approaches and present high quality image translation results on various challenging unsupervised image translation tasks, including street scene image translation, animal image translation, and face image translation. We also apply the proposed framework to domain adaptation and achieve state-of-the-art performance on benchmark datasets. Code and additional results are available in https://github.com/mingyuliutw/unit.
NeurIPS 2017.
Ming-Yu Liu, Thomas Breuel, Jan Kautz
Unsupervised image-to-image translation aims at learning a joint distribution of images in different domains by using images from the marginal distributions in individual domains. Since there exists an infinite set of joint distributions that can arrive the given marginal distributions, one could infer nothing about the joint distribution from the marginal distributions without additional assumptions. To address the problem, we make a shared-latent space assumption and propose an unsupervised image-to-image translation framework based on Coupled GANs. We compare the proposed framework with competing approaches and present high quality image translation results on various challenging unsupervised image translation tasks, including street scene image translation, animal image translation, and face image translation. We also apply the proposed framework to domain adaptation and achieve state-of-the-art performance on benchmark datasets. Code and additional results are available in https://github.com/mingyuliutw/unit.
52. An Unsupervised Method for Automatic Translation Memory Cleaning [PDF] 返回目录
ACL 2016. Short Papers
Masoud Jalili Sabet, Matteo Negri, Marco Turchi, Eduard Barbu
ACL 2016. Short Papers
Masoud Jalili Sabet, Matteo Negri, Marco Turchi, Eduard Barbu
53. TMop: a Tool for Unsupervised Translation Memory Cleaning [PDF] 返回目录
ACL 2016. System Demonstrations
Masoud Jalili Sabet, Matteo Negri, Marco Turchi, José G. C. de Souza, Marcello Federico
ACL 2016. System Demonstrations
Masoud Jalili Sabet, Matteo Negri, Marco Turchi, José G. C. de Souza, Marcello Federico
54. An Unsupervised Probability Model for Speech-to-Translation Alignment of Low-Resource Languages [PDF] 返回目录
EMNLP 2016.
Antonios Anastasopoulos, David Chiang, Long Duong
EMNLP 2016.
Antonios Anastasopoulos, David Chiang, Long Duong
55. Unsupervised Identification of Translationese [PDF] 返回目录
TACL 2015.
Ella Rabinovich, Shuly Wintner
Translated texts are distinctively different from original ones, to the extent that supervised text classification methods can distinguish between them with high accuracy. These differences were proven useful for statistical machine translation. However, it has been suggested that the accuracy of translation detection deteriorates when the classifier is evaluated outside the domain it was trained on. We show that this is indeed the case, in a variety of evaluation scenarios. We then show that unsupervised classification is highly accurate on this task. We suggest a method for determining the correct labels of the clustering outcomes, and then use the labels for voting, improving the accuracy even further. Moreover, we suggest a simple method for clustering in the challenging case of mixed-domain datasets, in spite of the dominance of domain-related features over translation-related ones. The result is an effective, fully-unsupervised method for distinguishing between original and translated texts that can be applied to new domains with reasonable accuracy.
TACL 2015.
Ella Rabinovich, Shuly Wintner
Translated texts are distinctively different from original ones, to the extent that supervised text classification methods can distinguish between them with high accuracy. These differences were proven useful for statistical machine translation. However, it has been suggested that the accuracy of translation detection deteriorates when the classifier is evaluated outside the domain it was trained on. We show that this is indeed the case, in a variety of evaluation scenarios. We then show that unsupervised classification is highly accurate on this task. We suggest a method for determining the correct labels of the clustering outcomes, and then use the labels for voting, improving the accuracy even further. Moreover, we suggest a simple method for clustering in the challenging case of mixed-domain datasets, in spite of the dominance of domain-related features over translation-related ones. The result is an effective, fully-unsupervised method for distinguishing between original and translated texts that can be applied to new domains with reasonable accuracy.
注:论文列表使用AC论文搜索器整理!